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1 INTRODUCTION

The significant contributions of Professor B. B. Mikic
and collaborators to fields of thermal contact conductance
and contact mechanics are summarized in this technical
note. Professor Mikic’s research is original and fundamen-
tal. The results have been cited and utilized in many prac-
tical applications.

Mikic is one of the pioneers who contributed to the
theory of Gaussian surfaces and their interactions. These
concepts have been extended to model pressure drop of fully
developed, laminar flow in rough surface microchannels and
heat transfer augmentation in rough surface microfins.

2 THERMAL CONDUCTANCE OF ROUGH SURFACES

Mikic and Rohsenow [1] studied thermal contact con-
ductance for various types of surface waviness and condi-
tions. In particular; nominally flat rough surface in a vac-
uum, nominally flat rough surfaces in a fluid environment,
smooth wavy surfaces in a vacuum environment with one
of the following three types of waviness involved: spherical,
cylindrical in one direction, and cylindrical in two perpen-
dicular directions, and rough spherical wavy surfaces in a
vacuum. Thermal contact resistance for two spherical wavy
rough surfaces was considered as the summation of a micro
and a macro thermal constriction resistance.

Mikic and Rohsenow [1], using a superposition method,
derived an expression for the spreading resistance in an
elemental heat channel (semi-infinite cylinder), with an
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Figure 1. EQUIVALENT CONTACT OF GAUSSIAN ROUGH SURFACES

isothermal boundary condition. They developed another
solution for mixed boundary conditions. They also studied
thermal spreading resistance of the flux tube with a finite
length. It was shown that the influence of the finite length
of the elemental heat channel on the spreading resistance
was negligible for all values of l ≥ b , where l is the length
and b is the radius of the flux tube. Later this expression
was simplified by Cooper, Mikic, and Yovanovich [2].

Mikic and Rohsenow derived expressions for the mean
size and number of microcontacts by assuming fully plastic
deformation of asperities and equivalent surface approxima-
tion, see Fig. 1. They used Hertzian theory to determine
the macrocontact area for smooth surfaces [1]. These rela-
tionships were used later by Cooper, Mikic, and Yovanovich
(CMY) [2]. In the case of rough surface contacts, knowing
that the macrocontact area would be larger than the one
predicted by the Hertzian theory, they defined an effective
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macrocontact area. This area contained all the microcon-
tact spots as if they had been uniformly distributed. Using
this definition and the assumption that the mean surface
would deform elastically, Mikic suggested an iterative pro-
cedure for calculating the macrocontact radius [1]. He ver-
ified his model against three sets of experiments.

Cooper, Mikic, and Yovanovich [2] developed a theory
for contact of nominal flat rough surfaces, assuming plasti-
cally deformed asperities, whose height and surface slopes
have Gaussian distributions, where the mean separation Y
is constant throughout the contact plane. The CMY model
was based on the uniform distribution of identical microcon-
tacts inside the macrocontact area. Mikic [3] summarized
the CMY relationships and reported them as follows:
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where σ, m, λ = Y/
√
2σ, ns, as, Ar and Aa are rough-

ness, surface slope, the dimensionless mean plane separa-
tion, number and average size of microcontacts, the real
and the apparent contact area, respectively. Moreover, the
effect of previous loading on thermal contact conductance
was discussed in [3].

Later Mikic [4] derived expressions for macroscopic and
microscopic thermal resistances in a vacuum, which related
the micro and macro thermal resistances to arbitrary pres-
sure distribution and surface properties. The derived re-
lations were general in the sense that they did not require
knowledge of the effective macrocontact area and they could
be applied for any symmetrical cylindrical or Cartesian
pressure distribution at an interface.

Mikic [5] proposed a plasticity index, γ = Hmic/E
0m.

He reported that the deformation mode of asperities de-
pends only on material properties and the shape of the as-
perities, and it is not sensitive to the pressure level. Mikic
performed an analysis to determine the contact pressure
over the contact area based on the fact that all contact spots
do not have the same contact pressure, although the aver-
age contact pressure would remain constant. For surfaces
with γ ≥ 3, 90% of the actual area will have the elastic con-
tact pressure; therefore the contact will be predominantly
elastic, and for γ ≤ 0.33, 90% of the actual area will have
the plastic contact pressure, thus the contact will be pre-
dominantly plastic. He concluded that for most engineering
surfaces the asperity deformation mode is plastic and the
average asperity pressure is the effective microhardness.

Mikic [5], based on the CMY model, proposed an elas-
tic model; the elastic model was also presented in [6]. He
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Figure 2. GEOMETRY OF ROUGH SPHERE FLAT CONTACT

assumed that the elastic real contact area is half of the plas-
tic contact area, i.e., Aelastic/Aplastic = 1/2. Mikic’s elastic
model satisfied the linear proportionality between the ap-
plied load and the real contact area. He also proposed an
effective elastic microhardness [5]:
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E0m√
2

(2)

where
1
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=
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+
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E2

where E and υ are the elastic modulus and Poisson’s ratio,
respectively. Mikic proposed an expression for calculating
the thermal contact conductance of conforming rough joints
assuming elastic deformation [5]
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Existing plastic models such as CMY [2] did not consider
the effect of elastic deformations beneath the microcontacts.
These effects would be negligible if the elastic modulus of
contacting bodies were infinite and/or the distance between
the neighboring microcontacts was small enough so the elas-
tic deformation was the same for all microcontacts. In re-
ality, none of the above is true and the elastic deflection
underneath a microcontact is always larger than the defor-
mation outside the microcontact area (mean plane). Mikic
[5] was the first to point out this problem and proposed a
model that accounts for the elastic deformation of substrate
underneath plastically deformed microcontacts.

Mikic and Roca [7] studied the contact of rough spher-
ical bodies, Fig. 2. They developed a numerical model
by assuming plastic deformation of asperities and that the
height of the surface roughness has a Gaussian distribution.
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Figure 3. GEOMETRY OF ROUGH MICROTUBE

Their model showed that an increase in roughness resulted
in a decrease in the contact pressure and an increase in
the contact area. The modeling results of [7] were mainly a
function of a non-dimensional parameter σ = πσE0/aHP0,H
and a weak function ofH/P0,H , where P0,H is the maximum
pressure in the Hertzian contact and H is the joint effective
hardness.

3 PRESSURE DROP ROUGH MICROTUBES

As the diameter of microtubes decreases, the surface
phenomena- including the effect of wall roughness become
more significant, see Fig. 3. The influence of wall rough-
ness on the laminar, fully-developed, incompressible flow in
microtubes is investigated and a novel analytical model is
proposed [8]. The concept of frictional resistance is intro-
duced and its relation to the Darcy friction coefficient is
derived. The model assumes an isotropic, Gaussian distrib-
ution for wall roughness. Owing to the random nature of the
wall roughness, an exact value of the local radius can not be
used for rough microtubes. Instead, probabilities of differ-
ent radii occurring should be computed. Two independent
random variables are considered to account for deviations
of the local radius of rough microtubes in the angular and
longitudinal directions. The local radius is assumed to be
the superposition of the two random variables. The effect
of wall roughness on the frictional resistance is presented
as a normalized frictional resistance or a correction factor,
i.e. R∗f = Rf/Rf0; where Rf0 is the frictional resistance of
the smooth microchannels with the same radius a. The final
results are reported in the form of a compact correlation:
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Figure 4. COMPARISON OF MODEL WITH ROUGH MICROTUBE DATA,

FROM [8]
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Figure 5. ENERGY BALANCE FOR AN EXTENDED ROUGH SURFACE

where ² is the relative wall roughness, ² = σ/a.

It is found that the effect of roughness is to increase the
pressure drop, compared to the Hagen-Poisuille theory, in
microtubes. As shown in Fig. 4, the published experimen-
tal data for pressure drop in microtubes, in which the wall
roughness is reported, are collected and compared with the
present model.

4 THERMAL PERFORMANCE OF RANDOMLY ROUGH

MICROFINS

Heat transfer plays a key role in a variety of applica-
tions in MEMS such as, thermal actuators in RF devices,
thermal flexure actuators, and thermal-compliant microac-
tuators. Recently, micro pin fin heat exchangers have been
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utilized in advanced thermal management solutions rang-
ing from gas turbine blades cooling to microelectronic chip
cooling. Micro surfaces that have been fabricated by MEMS
processes have some level of roughness. This surface rough-
ness can be envisioned as another extended surface on the
original extended surface, i.e., fins on fins, see Fig. 5.

Using the same approach that has been employed in
modeling of pressure drop in rough microtubes, an analyti-
cal model is developed that takes into account the effect of
roughness on a circular cylinder microfin [9]. The model as-
sumes an isotropic, Gaussian distribution for surface rough-
ness.

It is shown that, as a result of roughness, both cross-
sectional and surface area of microfins are increased which
results in an enhancement in the heat transfer rate and thus
the thermal performance of microfins. Moreover, it is ob-
served that as the surface roughness increases the mean tem-
perature of the microfin decreases, see Fig. 6. The results
of the analysis can be used to improve upon the thermal
analysis and design of microfins and micro structures.
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